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A Langevin equation of Landau-Ginzburg type for the stochastic dynamics of 
a scalar field on a lattice is studied. A cluster expansion is developed for this 
problem which converges for large mass. As a consequence, one establishes 
uniformly in the volume: (a) exponential decay of correlations in space and 
time, and (b) exponential approach to equilibrium for a class of nearby initial 
distributions. 
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1. I N T R O D U C T I O N  

Let A be a finite d-dimensional lattice which for definiteness take to be a 
toroidal lattice (2_/LZ) J for some integer L. For fields (p e EA consider an 
action of the form 

11 ] S((o)= ~ -~(ox((-A+mZ)q~)x+-~q)4x 
x ~ A  

(1.1) 

where A is the Laplacian on A and 2 and m 2 are positive parameters. Then 
there is an associated Langevin equation for the stochastic dynamics of ~o 
given by 

d~o 1 
- V S +  

dt 2 

1 1 
= - -  ~( --zl + mZ)q) -- ~ 2q) 3 + q (1.2) 
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Here t /= t/x(t ) is a white noise random variable with covariance 

E(,tx(t) ,tAt')) = a~, ~ ( t -  c) 

One expects (and we will see) that exp[-S(cp)]dtp  is a stationary 
distribution for solutions of this equation and that all other initial distribu- 
tions tend to it. It is called the equilibrium or Gibbs state. 

This model can be taken to describe the time evolution of an order 
parameter for a statistical mechanical system, for example, the magnetiza- 
tion. Then it would be called time-dependent Landau-Ginzburg theory. 
This application is described in Hohenberg and Halperin. (1) (In their 
terminology it is model A.) 

On the other hand, the equilibrium state (or a continuum version of 
it) can be though of as (p4 Euclidean quantum field theory. Then t is just 
a parameter and is not interpreted as time. One can adopt the strategy of 
studying the equilibrium state by investigating the full process. This is 
known as stochastic quantization. The method (which extends to many 
other field theories) has some substantial advantages, particularly for 
numerical work. This application is described in Parisi (2) and Damgaard 
and Hiiffel. (4) 

In this paper we study solutions of (1.2) for a class of initial distribu- 
tions close to equilibrium. For this class (described precisely in Section 2.3) 
and for m sufficiently large we show that all the correlation functions have 
exponential decay in x and t uniformly in the volume A. For example, for 
the two-point function 

I~(q~x(t) ~0x,(t')) - E(~0x(t)) E(~0x,(t'))l 

~< (9(1) exp[  - a (  l x -  x'l + I t -  t' 1 )] (1.3) 

As an application, we show an exponential approach to equilibrium. Of 
course, bounds like (1.3) are central to many infinite-volume questions. 

There is a substantial mathematical literature on related problems, 
especially on stochastic Ising models in which the state space (i.e., the X in 
the configuration space X A) is finite. A sampling of work with continuous 
state space related to that given here can be found in refs. 5-8. 

There are also treatments of continuum models (A c R e) in low 
dimension for exactly the present model, i.e., stochastic (p~ field theories. 
These are due to Faris and Jona-Lasinio (for d =  1) (9) and Jona-Lasinio 
and Mitter (for d =  2). (t~ 
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2. SOLUTIONS 

2.1. The Linear Case 

Let us start by finding solutions of (1.2) for 2 = 0. The equation can 
be written in the standard form 

d 9 = - �89 dt + dB 
D= ( - A  +m 2) (2.1) 

where B is a Brownian motion in R A, that is, a family {Bx(t)},  x e A ,  
t e [0, or), of Gaussian random variables such that 

E(Bx(t)  Bx,(s)) = 6~,x, rain(t, s) 

This is the equation for an Orenstein-Uhlenbeck process with drift term 
- � 8 9  

A solution cp with initial point Z e RA is given by the stochastic integral 

qS(t) = e x p -  ~ + e -D(t-s)/2 dB(s) (2.2) 

This process has continuous trajectories. It can be realized on the space of 
continuous functions 

O -- C~ oo), ~A) 

as the coordinate function (~0(t))(co)= co(t), co E D, if we supply [2 with the 
measure 

g~  = E(1 4 (qS)) (2.3) 

where A e Y ,  the a-algebra generated by the (o(t). 
Next we average over the initial point defining i~ ~ on f2 by 

kt~ = f I*~(A) dv~ (2.4) 

where v ~  vD_l is the Gaussian measure on R A with covariance D t. A 
short calculation shows that for /l ~ the coordinate function is Gaussian 
with covariance 

Cx, x,(t, ~')= [D - I  e x p ( -  � 89  (2.5) 

Accordingly, we also write # o = / l c .  The process is seen to be stationary, 
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confirming that #o is an equilibrium distribution. If we also allow negative 
times, then Cx.x,(t, t') can be regarded as the kernel of operator C =  
( - 0 2 / a t 2 +  �88 2) ~. 

The decay properties of C will be important for later developments. 
We have that for any a >~ 1 there is an mo so that for m >~ mo 

IC~,x,(t,t')l<~Cg(m 2 ) e x p [ - a ( l x - x ' l + l t - t ' l ) ]  (2.6) 

This bound can first be established for (x, t) ~ Z d x ~ by a contour defor- 
mation in Fourier transform space. The toroidal case (x, t ) e A  x R is 
expressed as a periodization of the infinite-volume case, and the bound 
carries over. 

2.2. The General Case 

For  2 > 0 ,  write Eq. (1.2) as 

d~p = ( -  �89 D(P + b( (p ) ) dt + dB 
12 _3 

(2.7) 

We want to find a measure #x on g2 such that the coordinate function on 
s is a solution of the equation with initial point Z- The Girsanov- 
Camer0n-Mart in  formula gives such a measure as a perturbation of the 

o for 2 =0.  If o is the expectation for #z, measure #x Ex 0 then 

where 

,uz(A) = E~ 1A Z(t)) (2.8) 

1 ,  as 1 Z(t) = exp If~ (b(~o(s)),dO(s))-~ fo ]]b(cp(s))H2 (2.9) 

Here the inner product and norm are in ~A and 0(t)  - q~(t) + ~; �89 ds 
is a Brownian motion. For  A e ~  [the a-algebra generated by ~0(s'), 
0 ~< s'~< s], one can take any t satisfying t >~ s. 

If b were bounded, this would be quite standard (see any book on 
stochastic differential equations, for example, Friedman (n) or Stroock and 
Varadhan(12)). Since it is not, some further justification is needed. 

Let us start by finding an alternate expression for Z(t). Let 

4 

X ~ A  
(2.10) 
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Then the claim is that 

1p(~o(t))-fo W(~o(s))ds] (2.11) Z(t)=exp [~ P(~o(O))-~ 
_ _  1 t To see this, note that 5~o Ilbl] 2 gives the sixth-order term in W. For the 

other term, use Ito's formula: 

f~ (b(~o(s)), dO(s)) 

= - ~  ((vP)(~o(s)) ,  d(o(s)) 

= ~ P(~o(0)) 1 lf~ --~ P(cp(t)) + ~ ((A-(Dq~).V)P)(q~(s))ds 

The last term gives the quadratic and quartic terms in W. 

L e m m a  2.1 : 

(a) W(~o)~>2 - d  x~,___ ~~ IAI 

(b) IZ(t)l ~<exp Ix~A {~ E~~176 ( ~ - d )  f~qo4(s)ds} 
9 

(a) In D=(-A+m 2) the lattice Laplacian has matrix Proof. 
elements 

( - J ) x ,  = - 
otherwise J 

Correspondingly, there is a nonlocal contribution to W with absolute value 

2 
q)3xq~y ~<~ Z (~~ ~ (2.12) 

4 1 x -  y l  = I I x -  y l  = 1 " x x 
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The rest of W is local and has the form 

3 , ~  + x ;2 ~1 ~ [ - ~  a (rn2 + 2d)~~ +-~ - 

> ~o - ~ )  (2.13) 

where we use 
3 m 2 9 ( 2 )  

Combining these gives the result. Part (b) follows from (a). 

T h e o r e m  2.2: 

(a) #z(A)=E~ defines a probability measure on (f2,~s) 
which is independent of t for t/> s. 

(b) For  this measure the coordinate function q)(.) on s solves (2.7) 
in the sense that it solves the associated martingale problem. 

Proof. (a) By Ito's formula for the exponential function and the 
process ~ b .d~ - �89 2 dt, we find 

z ( t )  = 1 + Z ( s ) ( b ( ~ ( s ) ) ,  cl(o(s)) (2.14) 

Now b(q)(s)) is square integrable and by the lemma Z(s) is bounded 
[(p(0) = )~]. Then Z(s)b((p(s)) is square-integrable and nonanticipating, so 
(2.14) shows that Z(t) is a martingale: E~ Z(s) for t >  s. Taking 
the expectation for s = 0 gives E~(Z(t))= 1, s o / ~  is a probability measure. 
For  A ~  and t>s, E ~  = IAZ(S  ) and taking the expectation 
shows that the measure is independent of t. 

(b) We must show that for 0~ RA 

X~ { (O, ~o(t)-q)(o)-- f] [ -  �89 Dq)(s) + b(q)(s))l ds)-~llOH2t } 
(2.15) 

is a martingale for #z. ~12) This will follow if we show that Z~ = X~ Z(t) 
o But we have is a martingale for #z. 

Z~ (b(~o(s))+O,d(o(s))-~ IIb(q)(s))+OII2 ds (2.16) 
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This is a martingale by the argument of part (a), once we show it is 
bounded. However, 

,X~ ~<exp [,,0,] ~ ~ {,q~x(0), + ,q)x(t), 

+ fj [ cg(1) l~o x(s )l + ~ lq) x(s)13] ds} ] 

and combining this with the bound on Z(t) from the lemma shows that 
Z~ is bounded. 

2.3.  I n i t i a l  D i s t r i b u t i o n s  

Let us consider initial distributions given by measures v on ~A of the 
form 

v( B ) = v~ B e x p ( - P -  Q ) )/v~ exp( - P - Q ) ) (2.17) 

Here P is given by (2.10) as before and gives the equilibrium measure; see 
below. Q gives the deviation from equilibrium and is taken to have the 
form 

Q(~p)=2 ~, q(cp~) (2.18) 
x e f l  

where q is a polynomial which is either bounded below or at least such that 
�89 q(~p) is bounded below. We could also allow some nonhomogeneity 
in x in Q, but for simplicity stick with (2.18). 

Averaging/~x over the initial point I with weight v, we define measures 
/~ on s by 

#(A) = f #•(A) dv(z) (2.19) 

By (2.4), (2.8), (2.11), and (2.17) we find for A e ~  

# ( A ) = ( f  1Ae V, c l~c ) / ( f  e V, dPc) 

where for t ~> s 

(2.20) 

V,(q~) = ~ P(q~(O)) + Q(q~(O)) + ~ P(q~(t)) + w(~p(s)) ds (2.21) 
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If F is Z-measurable,  then the expectation with respect to # would be, for 
t >~ s, 

These are the objects of interest, particularly the correlation functions for 
which F(q0) = q~l(tl)- .-(px,(tn). 

Note that the measure # o  and these integrals in particular, which are 
defined on the space (2 = C~ ~ ) ,  RA), could also be regarded as defined 
on the space f2 = C~ RA), as is done in the rest of this section, or as 
defined on f2 = C~ t],  R~), as is done in Section 3. 

If Q = 0, we use the notation V,*, #*, E* for the equilibrium quantities. 
The next result shows that #*, E* are indeed stationary. 

First we need some definitions. Let ~ , b  be the a-algebra generated by 
q~(u), a ~< u ~< b. Let T, be the time translation operator on f2 defined by 
(T, co)(s) = co(s-t)  and let 0 be the reflection operator (Oco)(t)= co(-t). 
Finally, define 

1 1 f v*,,, =~ P(q~(s))+-~ P(q,(t))+ w(~o(u))du 

so that V0*,, = V~*. 

P r o p o s i t i o n  2.3. Let F be Ya, b measurable (O<<.a~b) and #c 
integrable. Then: 

(a) ~ F e x p ( -  Vs*t) d#c is independent of s, t for 0 ~< s ~< a ~< b ~< t 

(b) ~ (Fo T , )  exp(-- Vo*,) d#c is independent of u for 0 ~< u ~< t -  b 

Proof. (a) We want to replace V*, by V* b. If s = 0, we already know 
that we can replace t by b. We reduce the general case to this. For 
O<s<~a, we have 

f F e x p ( -  V't) d#c = f (Fo Ts) e x p ( -  V~,t_,) d#c 

= f (Fo Ts) e x p ( -  * Vo,~_,) d#c 

= f F e x p ( -  V,*b) d#c 

Here we use that #c  is translation invariant and that Fo T, is -~-a-,,b-, 
measurable and hence o~o,b_ , measurable. 
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To shorten the left endpoint, we use 

f F e x p ( -  V~*b) disc = f (Fo Tbo O) e x p ( -  Vo*b ,) dFc 

= f (Fo Tbo 0) exp(-- Vo* b a) d~c 

= f Fexp(  - V'b) d~ c 

Here we use that /~c is reflection invariant and that FoTboO is ~o,b 
measurable. 

(b) By part (a), since Fo T u is ~ + u , b + ,  measurable and since 0, 
u<~a+u and b+u<<.t, t+u:  

f (go T , )  exp( - V~*,) cl~c = f (Fo T u) exp( - V'u.,+ u) d~c 

= f r e x p ( -  V~*,,) d[l c 

Remark. Consider the equilibrium correlation functions at equal 
times E*(~ox,(s)-.. ~ox,(s)). By translation invariance we can take s = 0 and 
then replace Vo*~ by Vo*,o = P(cp(0)). For the time zero fields gc is just vo-~ 
and so 

E*(~ox,(s)... ~oxo(s)) 

f ~ox,.-- (px, exp[ - P(cp)] dv~-,(~o)//f exp[ - P(q))] dv D - l ( q) ) 

The right side is a ~o 4 field theory, and this is a fundamental identity of 
stochastic quantization. 

3. E X P A N S I O N S  

3.1. M a y e r  Expansion 

We want to study long-distance properties of integrals of the form 
S F e x p ( - V T )  d#c. The method is a general technique known as cluster 
expansions, which expresses such integrals as sums of local pieces. General 
references are refs. 13, 14, and 18. Our expansion is not quite standard 
because we have both discrete and continuous variables in the underlying 

822/58/5-6-26 
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space, and because there is nonlocality both in the potential Vr (due to D) 
and in the measure d#c (due to C). 

We begin by breaking the nonlocality in Vr with a Mayer expansion 
of e x p ( - V r ) .  Beginning with the expression (2.21), we write 

(3.1) 

where the sum is over unit intervals I in [0, T] (now with T integral), 
points x e A, and nearest neighbor pairs (bonds) b in A. 

V~,~ is the local piece and is given by 

2 ,~2 
V/'x= f l l -  ~ ~'(p2(S) -k ~ (m2+ 2 d ) q ~ ( s ) +  ~-(p6(s)] ds 

2 4 + f,I-~(px(S)+ 2q(~Ox(S))]6(s)ds+ fz[~ep4x(s)l~(s- T)ds (3.2) 

For each bond b = (x, y), I x -  Yl = 1 we have the nonlocal piece 

V,.~= f,~ @(S) ey(S) dS (3.3) 

The Mayer expansion for Vt is 

e x p ( -  V,)= I] exp(- Vz, x) ~ [I [exp(- V,,b~)- 1] 

where the sum is over collections {b~} of bonds in A. If we group together 
the terms in this sum into connected clusters, we have 

e x p ( -  V,) = ~, 17I p(Ix Yt~) 

where the sum is over partitions { Ye} of A and for Y c A 

p(IxY)= 1-I exp(-V1,x) Y', 1][exp(-V,,~,)-l] (3.4) 
x ~ Y  { b e } ~ Y  c~ 

where the sum is over {b~} connecting Y. As a special case, we have 
p(Ix {x}) = e x p ( -  VI,~). 

Taking the product over L we have 

e x p ( -  VT) = • [ I  p(U~) (3.5) 
{ ur} 
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where the sum is over partitions { U~} of [0, T] x A into sets of the form 
U-- I x Y with Y connected in A. 

The basic estimate on p is 

k e m m a  3.1. For m 2 sufficiently large, 2-%< 1, and I Y! ~> 2 

lp(Ix Y)I ~< [(9(m-2)] lyl 1 (3.6) 

Proof. We use 

l exp( -  V~,b)- II ~ m---Texp ~ IVy, hi 

and (2.12) to obtain 

/ 8d'~ l 
]~I [exp(-V, ,b , )  - 1  ] ~<[~5)  

On the other hand, as in (2.13), 

H e x p ( -  vl, x) ~< exp [ 
2m z 

x ~ Y  8 

Thus, 

p(I• Y 

yl  1 2 r n 2  ~ e . ds] 
exp [ ~ - x ~ y  J q~4(s ) (3.7) 

- - -x~yf lCp4x(s)ds]exp[6 ' (1) lYI]  (3.8) 

[C(m 2)]JYI-'~<[C(m 2)]iYI-i 

the last step since there are at most [C(1)]IvJ~< [(9(1)] IYI 1 terms 
s u m .  

in the 

3.2. Modi f ied  Gaussian Measures 

The next step will be to expand the measure /~c into measures with 
covariances which do not couple certain regions of space and time. We 
start by explaining the elementary step in this expansion. 

Define a paved set in [0, T] • A to be a set expressible as an union of 
unit lines I x  {x}. For paved sets S, S' define 

C(S, S')x,x,(t, t ' ) =  1s(x, t) Cx, x,(t, t') ls,(X', t') (3.9) 

and C(S)=C(S, S). We want to consider a Gaussian process with 
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covariances C(S)+ C(~S) which decouple S and ~S.  More generally, 
consider convex combinations of such covariances, such as 

Cs=sC+(1-s)[C(S)+C(~S)], s e [ 0 ,  1] (3.10) 

which interpolates between Co = C(S) + C(~ S) and C1 = C. 
These covariances are not smooth unless we alter the space. Define 

[0, T] '  = [ 0 , 1 ]  w (1, 2) w .-. w(T-1 ,  T] 

If S (and --~S) are paved sets in [0, T]'xA, then (C,)x.x,(t, t') is a con- 
tinuous positive-definite function on ([0, T]'x A )x  ([0, T]'x A) and so 
defines a Gaussian process with this covariance. Furthermore, Cs is smooth 
enough to admit continuous sample paths, so the process may be realized 
as the coordinate function on 

f2' = C~ T]' x A)~ C~ T]', NA) 

Let Pc, denote the associated measure on this space. Note that a special 
case of all this is the original process for C (with integral times deleted 
except 0 and T). 

The difference between #cl and #co is expressed by 

f Fd#cl - f  Fd#co 

1 ds f ~ (C, - Co)~ a~Fd#cs __f0 1 

Here for any C a symbol like C oAo 
operator 

(3.11) 

stands for the formal differential 

CoA~=f dtdt' ~ Cx, x,(t, t')3/#q)x(t)a/#%,(t') (3.12) 
X, x '  

We use (3.11) when F is a sum of terms of the form 

I f  p,(q)(t,) ..... q)(tn)) f(tl,... , t,,) dtl "" "dt,J p2(q~(0))p3(qo(T))e -vT (3.13) 
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where p, ,  P2, P3 are polynomials, and f is bounded. When C is also 
bounded, we claim that CoA~o makes sense on this class of functions and 
in fact preserves the class [so that iteration of (3.11) is possible]. Applying 
A~o formally introduces 6-functions. For example, to pick some typical 
pieces of Vr, if G ( c p ) = ~  ~0~(0) 4, then 

aa/a~ox(t)-- 4~o~(0) 3 a(t) 

a=o/&o~(n a~o~,(c) = 12~o~(o) = 6~,x, 6(t) 6(c) 

or if O(cp)=Zx f~ q)x(S)4 ds, 

OG/a~o,(t) = 4~0x(t) 3 

02G/&o ~(t) 0(p~,(t') = 12p~(t) 2 6~.~, c~(t- t') 

The &functions are immediately evaluated in the integral defining Co A~, 
and in this way one sees that (Co Ao)F is again in the class (3.13). 

To prove (3.11), one can first prove it for functions F depending on a 
finite number of variables by an explicit computation. The general case can 
be established by approximating the integrals in (3.3) by Riemann sums 
and then taking limits. For details in a case with two continuous variables 
see Dimock and Glimm. (~s) 

In applying (3.ll), it is useful to note that the term ~Fd#c o may 
factor. Let f2(S) = C~ Since S and ~ S are disconnected in [0, T] '  x A, 
we have s163 Under this identification, d#c(s)+c(~s)~ 
d#c(s)xd#c(~s). Thus, if F = F( S) F( ~ S) with F(S) localized in S, etc., 
then 

3.3. Expansion of Pc 

Suppose now we are given a partition {Us} of [0, T ] ' x A  into 
connected paved sets as in Section 3.1, and suppose F is a function which 
factors across the partition, i.e., F =  I]~ F(U~) with F(U.~) localized in U~. 
We want to expand ~ Fdl~c in localized pieces. 

Let U1 be the partition element which contains the first line I x  {x} 
relative to some fixed ordering of unit lines. Apply (3.11) with S =  UI and 

Csl : s i C - I -  (I  -S l ) [O(Ul ) -~-  C( ~ g l )  l 
We have 

1 
~(OC~I/asI)oA~=C(-UI,~:,)oA~= ~ C(U2,~Zl)oA~ 

U2~ Ul 
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and using also (3.14) we have 

1 

-~ ~ fo dS1 C ( U 2 '  U,)oA~,Fd#c,, 
U2 ~ UI 

Now for each U2 the function C ( U 2 ,  U1)oA~oF factors across 
$2 = U~ w U2, and hence so will the integral if we break C~., on $2 with 

c,,,s~=s~C~,, + (I -sg[C~,(sg+ c~,(~ s~)] 

In the error term we have 

1 
-~ ( aCs~,s]as2)  o A ~ = c ,~(  ~ $2,  s2)oZl~o 

U3 -7 ~ UI , U 2 

Continuing, we get a sequence U~, U2,..., Un whose union is S, and 
covariances 

Csl ....... =s,,C,~ ........ l+(1-s, , )ECs,  ....... ~(S,,)+C~j ........ j ( ~ S , ) ]  (3.15) 

For each { U~}-paved set X containing U1 we group together the terms in 
the expansion for which S~ = X. Then the expansion has the form (see, for 
example, ref. i6) 

f F d#c= ~ KF(X) I f F(~ X) d~tc(_ x) ] (3.16) 
X 

Here F(X)=y[~F(U~), the product over the {Us} in X. The quantity 
K'e(X ) is defined by 

(U1,...,Un) t 1 j = 2  

(3.17) 

Here the first sum is over orderings (U~ ..... U,) of the { UT} in Jr, but with 
U 1 always the first in the base ordering. If X has only the single element 
U1, then KF(X)= S F(X)d, uc(x). The second sum is a sum over functions 
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from (2,..., n) to (1,..., n -  1) with q ( j ) < j ;  these can be thought of as the 
tree graphs on n vertices. Finally, s= (sl ..... s, 1), Cs = C,~ ,~ and 

f(r/, s )=  f i  s j _ 2 s  j 1 -.-s~/(j) 
j = 2  

with a factor 1 if ~/(j) = j -  1. 
Now we iterate (3.16), beginning by decoupling the first partition ele- 

ment in ~ X. This yields 

f Fdffc= ~. [ l  RF(X,) (3.18) 
{x4 i 

where the sum is over partitions {X~} into {UT}-paved sets X~. 

3.4.  T h e  Ful l  E x p a n s i o n  

Now let F be a polynomial in q~,(t) that factors over paved sets, for 
example, a monomial. Combining the Mayer expansion (3.5) and the #c 
expansion (3.18), we have 

f F e x p ( - V r )  d#c= ~ f F~p(U,)d#c 
{ u,~} 

= E Z II g .(x,t 
{ur} {x4 

where, for each {U~}, p = M r  p(U~). Changing the order of the sums, we 
have a sum over {U.,} finer than or equal to {8-i} which factors over the 
{X~}. This leads to 

f F e x p ( -  Vr) d # c =  ~ I~ KF(Xi) (3.19) 
{Xi}  i 

where the sum is over all partitions {Xi} of [0, T]'>< A into paved sets. 
The Kr(X) may be written as 

{UT} (UI,-..,Un) rl j = 2  

x (] p(U,) F(X) dHc,(~) 
i ~ l  

(3.20) 

The sum is over partitions { U s } of X with U~ = I t, x Y~, Y:, connected, and 
orderings (U1 ..... U,,) of these with U1 always the one containing the first 
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unit line in X. The term with {Us} = {X}, if it occurs, is interpreted as 
p(X) F(X) d#c,(x). This is our cluster expansion. 

3.5. Estimates 

We want to show that KF(X ) is exponentially small if X is large or 
diffuse. The main ingredients are the exponential decay bound (2.6) for C 
and bounds of the form of Lemma 3.1 for p. 

For  any paved set X, let IX[ be the number of elements I x  {x} in X. 
With the intervals I represented by their midpoint, let d(X, X') be the 
distance between two such sets X, X', and let 2 ' (X) be the length of the 
shortest tree joining the elements of X. 

T h e o r e m  3.2. Let F be a polynomial which factors over paved sets. 
For a t> 1, let m 2 be sufficiently large and let 2 be sufficiently small so 
2m2~< 1. Then for any X, ]KF(X)[ ~< (.9(1), while for iX] >/2 we have 

IKF(X) i ~ [-(9(m-~)]lxl 1 e x p [ - a Y ' ( X ) ]  (3.21) 

The bounds are uniform in the volume IAI, and in the polynomial F if the 
degree and coefficients are bounded. 

As preparation we have the following result. 

L e m m a  3.3. Under the same hypotheses, given an ordered parti- 
tion (U~,..., Un) of X as in (3.20) (n t> 2) we have 

j = 2  i = l  

[OIm ,)],x,-1 (I exp[-ad(Vj, (I expI-a IV, I) (3.22) 
j ~ 2  i=1 

Proof. We first take apart the p(Us)=p(Isx Ys) by (3.4). The result 
is a sum over collections of bonds {b~} such that the connected sets they 
determine are exactly Y1 ..... Y,. For  each such {b~} the summand is then 

J 

x 1 [ I  - 

It suffices to show that (3.23) satisfies the bound of the lemma because the 
sum over {b~ } contributes a factor F[i exp[(9(1 )l Yil ] = exp[(9(1 ) [XI ] and 
this does not affect the bound. 
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We next distribute the formal derivatives over the factors in the 
product. Let X = ( 2 , . . . , n ) x ( 0 , 1 )  and for t = ( t k ) ~ x  and X=(Xk)k~.g 
define 

so that 

<~(t, _x)=H c(uj, u.(;~L~,0.~,,,(O.o, (j.:) 
J 

[I [c(uj,  u.~j~)o~] = f d_t ax~(t_, _x) [1 a/&ox~(t~) 
j k ~ J ~  

where dx means counting measure. Then (3.23) may be written 

f du~,(X) I dt dx ~(-t, -x) 

x [ f i r  0~-~(i'X)exp(-V~,~) ] [g~ ~(/)F(U,)]I (3.24) 

Here the sum is over all functions ?? from 3ff to J ,  where J = ~ w ... w J ,  
and 

~ =  {(i, b~): b ~ c  Y,} w {(i, x): x 6  Y~} w {i} 

Actually, not all 7's contribute to this sum. If we define 
Six = 0j~,-~(1)(J, 1) and for 2<~i<~n 

I (j, 1)j = (i, o) w s~ ? ,~  

then the derivatives O/3~Oxk(tk) , k e ~ ,  are localized in Ui and so must act 
on functions localized in Ui. Thus, we must have 7 ( ~ , ) c  ~ .  

The derivatives further distributed themselves according to partitions 
Pi, b~ of 7-1( i, b~) and P~,x of 7 -1(i, x). Let P = ({P~,b~ }, {P~,x}, {7-1(i)}) be 
the induced partition of 2U. Then (3.24) may be written 

Z f discs(X) fd tdx  cg(t_, x_)M(t, x)N 
7 P 

(3.25) 
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Here we have defined 

" b Yi 7zEPi ,  b~ 

• [I u,)3] (x~ r, ~I~e,.., ~ ( -  Vz"'x) ) [~?'-'(i' F( 

For each i, the products over b~ and x are restricted to 7 1( i, b~) r ~ and 
7 1(i, x) r ~ .  We have also defined 

The derivatives may now be evaluated. For tk e I (the only case that 
occurs) we have 

aV,,x 

aq~xk(tk) 

= - ~ X~Oxk(t~) + ,~(m 2 + 2d) ~o3~(tk) + ~ ,~ OXk(k) 

~ 3 

C3~O ~k ( t k ) Oq) x,( t ~ ) 

= - ~Ox~( t~ )  + ~ ~ O x ~ ( t ~ )  ~ 2 + 3 2 ( m 2 + 2 d )  2 2 5 

+ ( ~  2q~k(tk)+ 2q"(q~x~(tk)))fi(tk) 

and so forth; and for b = (x, y) we have 

Vl.b 3 )' 3 
O<pxk(tk ) 4 2~~ qgv(tk)6~k,X+ 4 (o~(tk)<~k,V 

and so forth. 
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With these evaluations we can break up M into a sum over 
monomials. We have 

M(t, x_ ) = ~. c,oMo,(t_, x) 5o,(_t, x) 
O9 

Here m runs over some index set which we will not need to specify 
explicitly. The co, are constants [they collect factors - ~ 2 ,  Z(m2+2d), 
etc.], the M~ are monomials in gOx~(tk), and 6o, collects all the 5-functions. 
In the time variables the (f-functions identify the tk with themselves or 0 or 
T, and in the space variables the 5-functions identify the x k with themselves 
or some other x ~ X. 

Now (3.25) is written 

2 Z Z f d#c,(x)f d2~(_t, x))Cd(_t, x) c~oM~o(t, x ) N  (3.26) 
7 P e)  

where d2o)(t, _x) = 6o,(t, x_) dt dx is a measure on ~2n X A 2n. 

Now we begin the estimates. A key role is played by the numbers 
d, = ]J~s] which are the incidence numbers for the tree graph tl. 

First, in the integral over q), apply the Schwarz inequality to separate 
M~, and N. We have then 

f MS d#cs(x)<<. 1~ N(Us)! exp[C(1) N(Us)] 
i 

(3.27) 

where N(Us) is the number of variables ~Oxk(t~) in M 2 with (tk, xk)s  Us. 
Bounds of this type are standard; see ref. 13, Theorem 8.5.5. The main 
ingredient is the exponential decay of Cs(X), which follows from the 
exponential decay of C. (Usually the role of the Us is played by unit blocks, 
but the more general case is easily deduced from the latter.) 

The number of variables in Us for M~o is at most deg F(Us) plus the 
number of derivatives acting in Us, namely di, times the maximum of ~0's 
introduced by a differentiation, namely r=max(5 ,  deg q - 1 ) .  Thus, we 
have N(Us) <<, 2[deg F(Us) + rds]. If we also use Zs ds = 2n - 2, we obtain 

(f M~ d~Lc,(x))l/2<~ l-I c(1)(ds!)" (3.28) 
i 

We also have, by (3.7) and (3.8), 

(f 2<s  O ~< I ]  [(9(rn-=)] I ]  exp[C(1)lYs[] (3.29) 
i, b~ i 

y I(S, b ~ )  = ~'2f 
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For % note that the coefficients in V~,~ are at worst (9(1), while those in 
Vz, b are (9(2)~< (9(m 2). This lead to the bound 

I~I~< ~ [-(9(m 2)] I1(9(1) (3.30) 
i, b~ i 

"/ l(i,b~) ~ 25' 

Combining (3.28)-(3.30) and using [I~.b~ (9(m 2) ~< I]~ [(9(m 2)]it, I-~, we 
obtain 

f I%Mo~NI d~c,(~)~I~ [(9(m 2 ) ] I Y ,  I 1 
i 

We next claim that 

exp[O(1) IYil](di!)" (3.31) 

fsupp ~ d2~o(t, x) ~ 1 

The time integral can be written in the form ~ llk(Ak dtk), where Ak is 
one of 1, 6(tk), 6(tk--T), or 6( tk - tk , )  for some k ' <  k in a lexicographic 
ordering of 2f. Since ~ A~ dt k ~< 1 (supp ~ has unit intervals), if we do the 
integrals in reverse order, we have ~ Ilk (Ak dtk)<<. 1. Similarly, the sum 
over space variables is bounded by 1. 

Using this result and (2.6), we obtain 

f~(=t,x)d2~(_t,_x) ~ll~ll~F[(9(m 2)exp[-2ad(Uj, U,(j))] (3.32) 
J 

Now we estimate the number of terms in the sums over 7, P, co. Since 
7 takes each :(//with d~ elements to ~ with (9(1)/Yil elements, the number 
of 7's is less than H i  [(9(1 ) I Yil ]a~ ~< [I~ (di)! exp[(9(1 ) II1,-I ]. For each 7, we 
estimate the number of partitions Pi, b~ of 7 l(i, b~) by 17-1(4 b~)l!, etc. 
Then the number of partitions P is bounded by 

U di! 
i 

Finally, for each 7, P the number of V's and F's in M is less than 2n and 
each contributes (9(1) terms to the sum over co. Thus, the sum over co has 
less than [0(1 )]2n ~ I-[~ exp[(9(1 ) ] Yi[ ] terms. 
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Combining all the above and using lYe[ = lUst, we have that (3.26) is 
bounded by 

(I {C(m 2)exp[-2ad(Uj, U~(/))]} 
j = 2  

x 12I {(9(m 2)1~-,1-I exp[(9(1)tUil](d,!)  r+2} (3.33) 
i = 1  

But if d i is large, some of the d(U s, U,(j)) for r/(j) = i must be large and one 
can show 

H (d/!)C(l) < I~ e x p [ ( 9 ( 1 )  d(Us, U.(j))] 
i j 

(3.34) 

(see ref. 13, proof of Lemma 18.7.2 for the idea). One may assume that a is 
large enough so that this factor is controlled by I-[sexp[-ad(Uj, U,(j))]. 
One also has (Zi I U~I - 1 factors of C(m-2). This is equal to IJ(I - 1, so we 
may use half of them to get a factor [C(rn ~)]lxl-1. It is also greater than 
�89 Ig[) ,  so we can identify a factor l-[i [(9(m 1/2)]iv, I, which is less than 
FL e x p ( - a l  Uil) for m sufficiently large. Thus, (3.33) is dominated by the 
right side of (3.22), as required. 

Proof of Theorem 3.2. The proof is now more or less standard, if 
]XI >~2 and X r  Y, Y connected, then by Lemma 3.3 (with 3a instead 
of a) we have 

IKF(X)I~ ~ ~ 
{u 7} (Ul,...,u,) 

x [(9(rn ,)]lxl-~ ]21 exp[_3ad(U/' U~(j))J 121 e x p ( - 3 a  ]U,t) 
j = 2  i =  1 

( 3 . 3 5 )  

The result now follows by the following steps. 

1. Use Zjd(Uj, U, ( j ) ) -~  lUst >~Lf(X) to get a factor exp[-a2,F(X)] .  

2. Take a factor ]-Lexp(-alUiF)=l-I./exp(-alUTI ) outside the 
sum over (U1 ..... U,). The rest is estimated by 

~ exp[-ad(U s, U.(j))] 1-1 e x p ( - a  IUil) 
(U1,...,Un) j i 

~< {exp[C(1)nJ } IF] ( d i -  1)! 
i 

(3.36) 
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To see that this is so, estimate the sum over U, by 

Un 

At the j t h  level we have 

~exp[-ad(Uj.  U,u))-a tUj]] IUjt 6 1 
uj 

~< ~ e x p [ -  ad(Uj. U,u))] (d  j -  1)! 
uj 

..< (9(1)Iu.u~l ( a j -  1)! 

At the last step there is no sum over 
lUll d' e x p ( - a  lUll)~< (9(1) (d l -  1)[. 

3. For  the sum over r/use the bound ~7) 

U~ and we just have 

f ds f(th s) [I (d~- 1)! ~< e(9(1)n 

M i 

[Alternatively, one can use (3.34) to gain a factor l~i (di!) -1 in the lemma 
and then use the more elementary bound Z ,  ~ dsf(tl, s)<~ e~(l)'.] 

4. The sum over partitions {U~} is controlled by 

Y, l i e  alU'/~eO(1)lXl 
(u-A 7 

The e ~ factors also have this bound and all are absorbed by 
[(9(rn 1)]1xl-1. Thus, the proof is complete in this case. 

If X = I x Y, there is an extra term with { U~ } = X which has a special 
definition. If also iX] ~> 2, use Lemma 3.1 to bound this by [(9(m 2)] iXl-1 
Since I X I -  1 = 5r  for connected X, the result follows in this case. If 
IXI = 1, so X = I x  {x}, the extra term is the only term and the bound 
IKF(X)I <~ (9(1) follows from Ipi, xl <~ (9(1). This completes the proof. 

4. C O N S E Q U E N C E S  

The cluster expansion leads directly to estimates on the decay of 
correlations. These are expressed in terms of connected expectations 
(truncated expectations, cummulants) defined by 

. . . . .  ,4. , ,  
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These are combinations of the ordinary expectations (2.22), for example, 

EC(f~, f2) = E(fl  f2) -- E(f~) E(f2) (4.2) 

The main result is the following: 

T h e o r e m  4.1. Given a~> 1, let m 2 be sufficiently large and 2m 2 
sufficiently small. Then for (tk, xk)~Ag=---I~x {xk} we have uniformly in 
the volume the tree decay 

]EC((0xl(tl) ..... q~x=(tn))[ <,C(m 1)exp[--aSa(A1 w .-- uAn)]  

ProoL Take T sufficiently large and assume te~ [0, T]' ,  so we may 
work on (2' as in the previous section; the case of integral t~ follows 
by limits. The proof that follows is mostly standard. (~4'~8~ Let F =  
lrI~ [1 + ~k(0~(tk)]. By the cluster expansion (3.19), 

f Fe-Vr dpc = ~ I] KF(Xi) (4.3) 
{xi} i 

Let A=I• {x} denote a unit line. Factoring out the unit lines, we can 
write the right side of (4.3). 

~1 KF(A) Y', ]-] FfF(X,) (4.4) 
A = A  { X i }  i 

where now the sum is over collections of disjoint sets {Xi} with [Xi[ > 2, 
and where 

RF(X)=KF(Z) I] KF(A) -~ (4.5) 
A c X  

Next take the logarithm, treating the expansion as the partition function 
for a gas of (disconnected) polymers. This takes the form 

= 2 I~ ~ 1/n! ~ a(X 1 ..... Xn) f i  KF(~,) (4.6) 
A ~ A n - - 1  (X1 , . . . ,Xn)  i = 1  

where the sum is over ordered n-tuples (X1 ..... Xn) of paved sets and 
a(Xl ,..., Xn)= 0 unless they overlap. 

It is straightforward to show that under our hypotheses and for 
[~[ = sup/t~i[ sufficiently small 

]KF(A)- 1J ~< C(2m 2) + C([7I) < �89 (4.7) 
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and so from Theorem 3.2, for IX] >I-2, 

[RF(X) ] ~< [(9(m-a)]lxl 1 

It follows that 

e x p [ - - 2 a S ( X ) ]  (4.8) 

sup ~ ]KF(X)IeIXI<~ C(m -~) (4.9) 
zl X ~  A 

This estimate is sufficient to ensure that the sum in (4.6) converges and is 
bounded by (9(m 1)IAI. 

Now suppose that not all (tk, xk) are on the same line A. (This case 
can be included by a separate argument.) Then c~"/c~c~,..., &~,[---]~ = o gives 
zero on the first sum in (4.6). For the second sum only those terms 
(X~,...,X~) with the cover property L)k Ak ~ I)~ J(~ survive [otherwise some 
(tk, xk) is outside L)i X~, the term is independent of e~, and the derivative 
gives zero]. Thus, we have 

Ec(~0x,(tl),..., ~0xo(tn)) 

= ~n/~o~ 1 , . . . ,  ~0~ n l/n! 
n 1 

2' a ( X 1  , ' " ,  X n )  H KF(Xi)] (4.10) 
(XI,...,Xn) i a = 0  

where the prime indicates that the cover property must be satisfied. 
To estimate this, take a factor I ~ i e x p [ - a S a ( X i ) ]  from the estimate 

on [Ii~2F(Xi). By the connectivity of the X~ this is less than 
e x p [ - a S ~ ( X l w . . ,  w Xn)], which by the cover property is less than 
e x p [ - a S ~  ... wan)].  The rest of the estimate proceeds as before, 
except that the cover property also eliminates a sum over the whole 
volume. The bracketed expression in (4.10) is then bounded uniformly in 
the volume by 

[...]~<(9(m l ) e x p [ - a L ~ ( A l u  --- wAn)] (4.11) 

The bound holds in a complex polydisk ]eil < R with R 1< 0(1), and so 
by the Cauchy bounds we have our result. 

Remark. Theorem 3.2 required 2rn 2 ~< 1 and Theorem 4.1 needed that 
)~m 2 w a s  sufficiently small. In fact, these conditions on )~ are unnecessary: 
2 can be anything as long as m 2 is sufficiently large. 

To see this, make the change of variables ~o --> m ~q~ in the correlation 
function (2.22), say with Q = 0 for simplicity. Then we replace P, W, C by 
new objects 
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1 ~ --4~ 4 

x 

= m2~C 

1 
+-~2m 4~ (p 3x(D(p) x 

Now, if 1/2 < c( < 1, all the coefficients in P and if /are  small for m large 
1 ~ 2 4 ~  4"~ (the local quartic term is now ~,tm cpx ) and C has exponential decay 

as in (2.6) with a small coefficient in front [now (9(m 2~ 2) instead of 
C(rn-2)]. These features are all we need for the proofs to go through. 

As an application, we show that the correlation functions approach 
equilibrium as time evolves. 

Corollary 4.2. Uniformly in the volume, as t ~ o% 

E( ox (tl + t ) . . .  + t)) 

= E*(~ox,( t l ) . . .  ~o~,(t,,)) + C(e "') (4.12) 

Proof. Let fk=~ox~(t~+t) .  Since E* is stationary, the difference 
between the expectations can be written E( f l  . . .  f , ) -  E*(f l  .--f,).  Also, it 
suffices to prove the result for the connected functions, since the ordinary 
correlation function are sums of products of these. 

Let E~ denote the expectation with Q replaced by c~Q in (2.21) and 
(2.22). Then Eo= E* and E1 = E and we have 

E~(fa ,..., f , )  - E*.~( f l  ,..., f , )  

p 1 

= Jo d/d~ E~(f l  ..... f,,) d~ 

f2 = E;( f l , . . . , fn ,  - Q )  dc~ 

1 

= ~ f~ E2(f~ ..... f , ,  - 2q(~0~(0))) (4.13) 
x 

By the theorem (actually a slight modification allowing powers of the 
fields) 

IE~(fl ..... f , ,  --2q(q0x(0)))j ~ C(m l )exp[-aS( ' (Xl  ..... x , ,  x)] e x p ( - a t )  

The first factor gives the uniform convergence of the sum over x and so 
j(4.13)f ~< C(e-aO. 

822/58/5-6-27  
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Remarks. (1) Since the results are uniform in the volume, they also 
hold for any infinite-volume limit. Of  course, cluster expansions can also be 
used to obtain infinite-volume limits. 

(2) With no essential changes, one could replace q)4 in the original 
action (1.1) by any lower-semibounded polynomial .  

(3) We have treated models in which the correlat ion length is small 
(here bounded  by a - l ) .  It would also be of considerable interest to study 
critical theories with an infinite correlat ion length. Formal  treatments of 
such questions by renormalizat ion group methods  are given in refs. 1 and 
19. It may  be possible to make these r igorous using the methods intro- 
duced by Gawedski  and Kupiainen. (2~ 
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